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Abstract

Code is increasingly becoming a core data modality of modern machine learning
research impacting not only the way we write code with conversational agents like
OpenAI’s ChatGPT, Google’s Bard, or Anthropic’s Claude, the way we translate
code from one language into another, but also the compiler infrastructure under-
lying the language. While modeling approaches may vary and representations
differ, the targeted tasks often remain the same within the individual classes of
models. Relying solely on the ability of modern models to extract information from
unstructured code does not take advantage of 70 years of programming language
and compiler development by not utilizing the structure inherent to programs in
the data collection. This detracts from the performance of models working over a
tokenized representation of input code and precludes the use of these models in
the compiler itself. To work towards better intermediate representation (IR) based
models, we fully utilize the LLVM compiler infrastructure, shared by a number of
languages, to generate a 182B token dataset of LLVM IR with a 144B token public
version 2. We generated this dataset from programming languages built on the
shared LLVM infrastructure, including Rust, Swift, Julia, and C/C++, by hooking
into LLVM code generation either through the language’s package manager or
the compiler directly to extract the dataset of intermediate representations from
production grade programs. Our dataset shows great promise for large language
model training, and machine-learned compiler components.

1 Introduction

In several pieces of previous work (8; 14), the transformative potential of machine learning was
harnessed, machine-learned heuristic replacements developed, and in some cases (21) the heuristics
were upstreamed to the main LLVM codebase, improving all code run through LLVM when the ML
heuristics are enabled. Orthogonal to the replacement of heuristics with machine learning, a large
number of people have explored the ordering of compiler passes (4; 10). While the learning of
pass orderings was initially held back by the lack of easy-to-access, high-performance reinforcement
learning environments to validate new reinforcement learning strategies, this has by now been
addressed with the introduction of CompilerGym (4). In contrast, the learning of entirely new
heuristics, optimization passes, and other compiler components with large language models (22; 3)
to realize the transformative potential of this model class is held back partially by the lack of large
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Figure 1: Size distribution of LLVM intermediate representation (IR) bitcode within ComPile before
de-duplication within and among languages. Projects that we considered small and pooled had less
than 100MB of bitcode.

datasets of high-quality code to train such models properly. Models are only trained on smaller
datasets, such as Anghabench (5), Exebench (2), and HPCORPUS (11), or sometimes rely on
synthetic benchmarks. Small datasets ultimately lead to smaller, worse-performing models (9).

1.1 Contributions

Focussing on the paradigm of taking a pre-trained basic building block, a “foundation model”, we
pose the question "What does a modern, large code training dataset for compilers actually have to
look like?" and construct a high-quality dataset of a similar scale to existing LLM datasets solely at
the level of LLVM-IR. Within this context, we associate quality with the usage of code, with code
being used more often being of higher quality for our purposes. Correctly being able to reason about
very widespread code in production systems is incredibly important for compiler work. In the short
term, we believe our dataset will enable the training of larger language models for compilers useful
for an ever broader array of downstream tasks after fine-tuning, and in the long-term, enable use-cases
such as direct performance prediction to obtain a reliable runtime estimate without ever running a
single line of code. To these goals, our work makes the following contributions:

• The introduction of a 2.4TB dataset (closed), respectively 1.9TB dataset (public) of textual
LLVM-IR from Rust, Julia, Swift, and C/C++ with 182B, respectively 144B 3 tokens at a
vocabulary size of 10k. See table 1.1 for the number of tokens at varying vocabulary sizes.

• Open-sourcing of our workflow and compiler tooling to construct massive-scale IR datasets.

Vocabulary Size 10,000 50,000 100,000 200,000
ComPile (closed) 182 B 119 B 102 B 87 B
ComPile (public) 144 B 94 B 81 B 69 B

2 Background

Building upon package ecosystems as sources of intermediate representation is ideal due to the
large amount of packaged code and the abstraction over the build systems of individual projects. In
addition, package ecosystems act as a filter. Only code that gets used in production systems will get
packaged. The build system abstraction is due to a common compilation wrapper over compilation
recipes with their exact specification of dependencies. Modifying these build processes allows us
to take advantage of this existing infrastructure. In this work, we choose to specifically focus on

3Values linearly interpolated from raw size counts.
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Language C C++ Julia Rust Swift Total
Size (Bitcode) 13 GB 81 GB 197 GB 482 GB 5 GB 778 GB

Size (Text) 61 GB 334 GB 1292 GB 1868 GB 22 GB 3577 GB
Dedup. Size (Bitcode) 8 GB 67 GB 130 GB 310 GB 4 GB 518 GB

Dedup. Size (Text) 34 GB 266 GB 856 GB 1221 GB 19 GB 2395 GB
Table 1: Amount of IR contained within ComPile in textual and bitcode form before and after
deduplication.

utilizing package managers that explicitly allow setting compiler flags, such as the from-source
package manager Spack (6) that is focused on high-performance computing (HPC).

In addition to utilizing package managers, we also take advantage of several aspects of the LLVM
compilation infrastructure (16), particularly the Clang C/C++ frontend and LLVM-IR, the inter-
mediate representation LLVM uses. The full process of compilation, such as the one performed
by Clang with LLVM during the compilation of C/C++, is composed of three main stages: the
frontend, the middle-end, and the backend. A compiler frontend has the job of taking a piece of
source code, typically a single source file, sometimes called a translation unit, and generating a
module of intermediate representation that can then be processed by a compiler middle-end, such as
LLVM. A module typically contains multiple functions, referenced globals, and relevant metadata.
Compiler intermediate representations, or IRs, are designed to sit between the source programming
language and the compiler’s output, assembly. They are typically designed to be source-language
and target-agnostic. Within LLVM, the compiler middle-end operates over the IR produced by the
frontend through a series of grouped operations called passes. A pass is designed to perform a specific
task, such as removing dead code, simplifying the control flow graph, or combining instructions.
After optimization, the compiler backend takes over, performing the necessary tasks to transform
the (mostly) target-agnostic IR into target-specific machine code that can be executed on the target
machine. The backend typically performs tasks such as instruction selection, instruction scheduling,
and register allocation. We compose our dataset, ComPile, of LLVM-IR, as it gives a common
framework across programming languages and target platforms. These properties and more make
LLVM-IR a great modality for a compiler-centric dataset useful for compiler tasks such as program
analysis, optimization, and code generation.

3 Dataset Construction

To construct the IR dataset, we use a set of curated sources from five different languages. focusing on
code used in production systems. We include the majority of Spack (6), the Rust Crates Index, the
Julia Package Index, the Swift Package Index, and several large single projects. Individual project
sources are defined in .json files. While most projects are hosted in repositories on GitHub, we also
added sources consisting of archived compressed source codes such as tarball files. The builders then
ingest the information from the project on its build system, either through the manifest information,
which contains the information on the building mechanism and commands, or through an ecosystem
specific manifest processed by a script that is then processed into a complete package manifest. Next
in the workflow is the LLVM-IR extraction. Extracting IR depends on the way the IR is presented in
the source. A manifest that contains a list of LLVM bitcode modules extracted from the project is
then created. Leaning into the shared LLVM compiler infrastructure, we are able to take advantage of
existing LLVM tools and LLVM passes to obtain information about the LLVM-IR modules. After
building, IR extraction, and deduplication, the dataset is then ready for downstream usage in analysis
or training capacities. 4

The aim of our IR extraction approach is to extract IR immediately after the frontend, before any
LLVM optimization passes have run. To extract the bitcode into a structured corpus, we take
advantage of the ml-compiler-opt tooling from MLGO (21) as it allows for the extraction of IR
in a variety of cases. During IR extraction, we also collect some additional data, such as debug
information, as it is represented in the IR. We specifically collect bitcode rather than textual IR as
LLVM supports reading bitcode produced by older versions of LLVM but has no such support for
textual IR, which is also easily produced by running llvm-dis over the collected corpus.

4Scripts and builders to reproduce the entire dataset are available under the llvm-ir-dataset-utils
subdirectory under https://zenodo.org/doi/10.5281/zenodo.10155760
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Name of Dataset Tokens Size Languages
The Stack (13) - 2.9 TB 358 Languages

ComPile (closed) 182 B 2.4 TB Rust, Swift, Julia, C/C++
ComPile (public) 144 B 1.9 TB Rust, Swift, Julia, C/C++
Code Llama (20) 197 B 859 GB -
TransCoder (15) 163 B 744 GB C++, Java, Python
AlphaCode (17) - 715.1 GB 12 Languages

LLM for Compiler Opt. (3) 373 M 1 GB C/C++

Table 2: Breakdown of Related Datasets.

Training dataset deduplication can be important for the performance of several key model character-
istics. (1; 12). To this end, We deduplicate the entire dataset presented in this paper at the module
level by computing a combined hash of all global variables and functions, deduplicating based on a
hashing implementation that only captures semantic details of the IR. We chose to deduplicate at the
module level as this ensures the majority of the duplicate code is removed from the dataset while
leaving all significant context within each module for performing module-level tasks.

Please see appendix A4 for the exact details of our approach to the filtering of the closer version of
the dataset, to arrive at the public version.

4 Related Work

Most pretraining datasets for large language models (17; 13; 18) contain large swaths of code,
scraping source code from hosting services like GitHub, and GitLab without taking the quality of
the included code into account. Datasets of this type also do not guarantee that any of the code is
compilable, and often contain auxiliary files such as documentation in Markdown. Complementary
to these large pretraining-scale datasets, there exist a number of smaller, more focused datasets
aimed at the fine-tuning of already pretrained large language models (23; 17; 19). These datasets are
primarily collected through data extraction from coding competitions (17; 19), or the scraping of
curated websites (23). This guarantees a higher level of quality in regards to buildability and structure
for the included code, hence making them more optimal for fine-tuning. However, the data collection
methodology implicitly introduces a lack of variety in the datasets, reducing model performance (7).
For example, coding competititon datasets might include a couple thousand coding exercises which
contain a great many solutions to the same exercises, but yet they are only solving the very same set
of coding problems.

Additionally, there exist a number of domain-specific datasets (11; 2; 5). Often beginning with the
web-scraping of large amounts of code, these approaches modify the resulting code in a number of
ways. Examples include the modification of arbitrary source files to make them compilable (5) or
executable (2). ComPile, while being able to fulfill similar dataset demands, offers a number of key
advantages. The code in our dataset, by means of our dataset construction methodology, consists
only of compilable code, using the same compilation toolchain as used for production deployments
without changing semantics. Collecting IR before optimization allows for IR at any stage of the
compilation pipeline to be easily generated. This allows ComPile to go significantly beyond the
capabilities of previous compiler-targeted datasets.

5 Conclusion

In this work, we presented ComPile, a novel dataset of LLVM-IR collected from a number of package
ecosystems consisting of large production-grade codebases. It is significantly larger than previous
finetuning-focussed, and compiler-focussed code datasets, albeit smaller than large language model-
focussed code pretraining datasets. ComPile’s increased size in combination with its quality-focused
construction methodology not only enables the systematic evaluation of previous work, but opens
up entirely new avenues of research for IR-centric machine learning, and most specifically machine-
learned compiler componentry for which the scale of this dataset paves the way to an entirely new
generation of machine learning models for compilers.
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A Permissively-Licensed Dataset Size

Source Total Under Permissive Licenses with License Files
Rust 586 GB 468 GB 394 GB
Julia 210 GB 186 GB 186 GB

Spack 118 GB 67.3 GB 45.5 GB
Swift 7.35 GB 6.93 GB 6.93 GB
Total 921 GB 728 GB 632 GB

Table 3: Permissively licensed subset of ComPile in Bitcode size.

To filter our closed-source dataset for permissively licensed projects, we filter the entire database
of projects compiler into ComPile for the MIT, Apache-2.0, the BSD-3-Clause, and the
BSD-2-Clause licenses. For this we obtain the license information from package repositories,
GitHub, and in part manually using the go-license-detector 5, and distribute provenance infor-
mation, and license text along with the dataset to comply with terms.

5https://github.com/go-enry/go-license-detector
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