
ComPile: A Large IR Dataset from Production Sources

Aiden Grossman1∗ Ludger Paehler2 Konstantinos Parasyris3 Tal Ben-Nun3

Jacob Hegna4 William Moses5 Jose M Monsalve Diaz6 Mircea Trofin7

Johannes Doerfert3
1UC Davis 2Technical University of Munich 3Lawrence Livermore National Laboratory

4University of Minnesota 5University of Illinois Urbana Champaign
6 Argonne National Laboratory 7 Google, Inc.

amgrossman@ucdavis.edu ludger.paehler@tum.de
{parasyris1,talbn,jdoerfert}@llnl.gov jacobhegna@gmail.com

wsmoses@illinois.edu jmonsalvediaz@anl.gov mtrofin@google.com

Abstract

Code is increasingly becoming a core data modality of modern machine learning
research impacting not only the way we write code with conversational agents like
OpenAI’s ChatGPT, Google’s Bard, or Anthropic’s Claude, the way we translate
code from one language into another, but also the compiler infrastructure under-
lying the language. While modeling approaches may vary and representations
differ, the targeted tasks often remain the same within the individual classes of
models. Relying solely on the ability of modern models to extract information from
unstructured code does not take advantage of 70 years of programming language
and compiler development by not utilizing the structure inherent to programs in
the data collection. This detracts from the performance of models working over a
tokenized representation of input code and precludes the use of these models in
the compiler itself. To work towards better intermediate representation (IR) based
models, we fully utilize the LLVM compiler infrastructure, shared by a number of
languages, to generate a 182B token dataset of LLVM IR with a 144B token public
version 2. We generated this dataset from programming languages built on the
shared LLVM infrastructure, including Rust, Swift, Julia, and C/C++, by hooking
into LLVM code generation either through the language’s package manager or
the compiler directly to extract the dataset of intermediate representations from
production grade programs. Our dataset shows great promise for large language
model training, and machine-learned compiler components.

1 Introduction

In several pieces of previous work (8; 14), the transformative potential of machine learning was
harnessed, machine-learned heuristic replacements developed, and in some cases (21) the heuristics
were upstreamed to the main LLVM codebase, improving all code run through LLVM when the ML
heuristics are enabled. Orthogonal to the replacement of heuristics with machine learning, a large
number of people have explored the ordering of compiler passes (4; 10). While the learning of
pass orderings was initially held back by the lack of easy-to-access, high-performance reinforcement
learning environments to validate new reinforcement learning strategies, this has by now been
addressed with the introduction of CompilerGym (4). In contrast, the learning of entirely new
heuristics, optimization passes, and other compiler components with large language models (22; 3)
to realize the transformative potential of this model class is held back partially by the lack of large

∗Corresponding author
2https://huggingface.co/datasets/llvm-ml/ComPile

Machine Learning for Systems Workshop at 37th NeurIPS Conference, 2023, New Orleans, LA, USA.

https://huggingface.co/datasets/llvm-ml/ComPile


ComPile

Rust (482 GB) Julia (197 GB)

Spack (87 GB)
Individual (14 GB)

Swift (5 GB)

Small Rust projects (256.06 GB). 18845 MB 11328 MB 7895 MB 7746 MB

3933 MB 3339 MB
2084 MB 2076 MB 1929 MB 1897 MB 1844 MB 1806 MB

1581 MB 1544 MB 1510 MB 1502 MB 1468 MB 1332 MB 1299 MB 1298 MB 1284 MB 1140 MB

1098 MB

1097 MB

1076 MB

933 MB

917 MB

896 MB

888 MB

870 MB

820 MB

820 MB

819 MB

818 MB

806 MB

799 MB 786 MB 741 MB 729 MB 728 MB 700 MB 695 MB 690 MB 688 MB 660 MB 655 MB 652 MB

643 MB 631 MB 631 MB 627 MB 607 MB 595 MB 589 MB 589 MB 588 MB 586 MB 583 MB 571 MB 570 MB 568 MB 566 MB

566 MB

566 MB

562 MB

560 MB

560 MB

560 MB

560 MB

559 MB

556 MB

551 MB

550 MB

534 MB

525 MB

525 MB

524 MB 522 MB 514 MB 512 MB 511 MB 506 MB 496 MB 488 MB 487 MB 486 MB 485 MB 477 MB 476 MB 472 MB 462 MB

458 MB

458 MB

457 MB

450 MB

442 MB

439 MB

439 MB

438 MB

437 MB

433 MB

431 MB

429 MB

428 MB

420 MB

419 MB

419 MB

414 MB

413 MB

398 MB

397 MB

397 MB

397 MB

396 MB

394 MB

390 MB

382 MB

381 MB

381 MB

380 MB

375 MB

370 MB

369 MB 368 MB 368 MB 368 MB 367 MB 360 MB 352 MB 350 MB 350 MB 348 MB 346 MB 346 MB 344 MB 343 MB 341 MB

341 MB 340 MB 340 MB 340 MB 339 MB 335 MB 335 MB 333 MB 332 MB 332 MB 332 MB 329 MB 329 MB 327 MB 327 MB 326 MB

326 MB

325 MB

323 MB

322 MB

322 MB

319 MB

318 MB

316 MB

314 MB

313 MB

313 MB

309 MB

306 MB

304 MB

304 MB

303 MB 302 MB 296 MB 295 MB 294 MB 290 MB 287 MB 286 MB 286 MB 285 MB 284 MB 282 MB 279 MB 279 MB 278 MB 277 MB

270 MB

268 MB

268 MB

266 MB

266 MB

266 MB

265 MB

265 MB

262 MB

262 MB

260 MB

257 MB

257 MB

257 MB

255 MB

254 MB

254 MB

253 MB

252 MB

252 MB

251 MB

251 MB

251 MB

250 MB

248 MB

247 MB

247 MB

240 MB

240 MB

240 MB

240 MB

238 MB

238 MB 238 MB 238 MB 238 MB 237 MB 236 MB 236 MB 236 MB 235 MB 235 MB 235 MB 234 MB 233 MB 232 MB 232 MB 232 MB

232 MB

232 MB

230 MB

230 MB

226 MB

225 MB

225 MB

224 MB

224 MB

223 MB

222 MB

222 MB

221 MB

221 MB

220 MB

220 MB

219 MB 218 MB 218 MB 217 MB 216 MB 216 MB 216 MB 215 MB 215 MB 215 MB 214 MB 214 MB 214 MB 211 MB 209 MB

208 MB 207 MB 207 MB 206 MB 205 MB

143 MB

142 MB

142 MB

142 MB

142 MB

141 MB

141 MB

141 MB

141 MB

141 MB

140 MB

140 MB

140 MB

140 MB 139 MB 139 MB 139 MB 139 MB 139 MB 138 MB 138 MB 138 MB 137 MB 137 MB 137 MB 137 MB

136 MB

136 MB

136 MB

136 MB

136 MB

136 MB

136 MB

135 MB

135 MB

135 MB

135 MB

135 MB

135 MB

134 MB 134 MB 134 MB 133 MB 133 MB 133 MB 133 MB 133 MB 132 MB 132 MB 132 MB 132 MB

132 MB

131 MB

131 MB

131 MB

131 MB

131 MB

130 MB

130 MB

130 MB

130 MB

130 MB

130 MB

130 MB 130 MB 129 MB 128 MB 128 MB 128 MB 127 MB 127 MB 127 MB 126 MB 126 MB

126 MB

126 MB

126 MB

126 MB

125 MB

125 MB

125 MB

125 MB

125 MB

125 MB

124 MB

124 MB 124 MB 124 MB 124 MB 124 MB 124 MB 124 MB 123 MB 123 MB 123 MB

123 MB 123 MB 122 MB 122 MB 122 MB 122 MB 122 MB 122 MB 121 MB 120 MB

120 MB

119 MB

119 MB

119 MB

119 MB

118 MB

118 MB

118 MB

118 MB

118 MB

118 MB 118 MB 118 MB 118 MB 118 MB 117 MB 117 MB 117 MB 117 MB 117 MB

117 MB

116 MB

116 MB

116 MB

116 MB

116 MB

116 MB

115 MB

114 MB

114 MB 114 MB 114 MB 114 MB 114 MB 114 MB 114 MB 114 MB 114 MB

113 MB

113 MB

113 MB

113 MB

113 MB

113 MB

112 MB

112 MB

112 MB 112 MB 112 MB 111 MB 111 MB 111 MB 111 MB 111 MB

110 MB

110 MB

110 MB

110 MB

110 MB

110 MB

110 MB

109 MB 109 MB 109 MB 108 MB 107 MB 107 MB 107 MB

107 MB

107 MB

106 MB

106 MB

105 MB

105 MB

105 MB 105 MB 105 MB 104 MB 104 MB 104 MB

104 MB

103 MB

103 MB

103 MB

103 MB

103 MB 103 MB 103 MB 103 MB 103 MB

102 MB

102 MB

102 MB

102 MB

102 MB 102 MB 102 MB 102 MB

102 MB

101 MB

101 MB

101 MB 101 MB 101 MB

101 MB

101 MB

101 MB 101 MB

100 MB

Small Julia projects (149.16 GB).
299 MB 264 MB 250 MB 242 MB 240 MB 237 MB

212 MB 208 MB

153 MB 152 MB 151 MB 150 MB 150 MB 150 MB 150 MB 148 MB 148 MB 148 MB

148 MB 148 MB 148 MB 148 MB 147 MB 147 MB 147 MB 147 MB 146 MB 146 MB

146 MB 146 MB 146 MB 146 MB 146 MB 145 MB 144 MB 144 MB 144 MB 144 MB 143 MB

143 MB 143 MB 143 MB 143 MB 142 MB 142 MB 142 MB 142 MB 141 MB 141 MB 141 MB

140 MB 140 MB 140 MB 140 MB 139 MB 139 MB 139 MB 138 MB 138 MB 138 MB 138 MB

137 MB 137 MB 137 MB 136 MB 136 MB 136 MB 135 MB 135 MB 135 MB 135 MB 135 MB

135 MB 135 MB 134 MB 134 MB 134 MB 133 MB 133 MB 132 MB 132 MB 132 MB 132 MB

132 MB 132 MB 132 MB 132 MB 131 MB 131 MB 131 MB 129 MB 129 MB 128 MB 128 MB

128 MB 128 MB 128 MB 128 MB 127 MB 126 MB 126 MB 126 MB 126 MB 126 MB 125 MB

125 MB 125 MB 125 MB 125 MB 125 MB 124 MB 124 MB 124 MB 123 MB 123 MB 123 MB

123 MB 123 MB 123 MB 123 MB 123 MB 122 MB 122 MB 122 MB 122 MB 121 MB 121 MB

121 MB 121 MB 121 MB 121 MB 121 MB 121 MB 120 MB 120 MB 120 MB 120 MB 120 MB 120 MB

119 MB 119 MB 119 MB 119 MB 119 MB 119 MB 118 MB 118 MB 118 MB 118 MB 118 MB 118 MB

117 MB

117 MB

117 MB

117 MB

117 MB

117 MB

117 MB

117 MB

117 MB

117 MB

117 MB

117 MB 116 MB 116 MB 116 MB 116 MB 116 MB 116 MB 116 MB 116 MB 116 MB 115 MB

115 MB

115 MB

115 MB

114 MB

114 MB

114 MB

114 MB

113 MB

113 MB

113 MB

113 MB 113 MB 113 MB 113 MB 113 MB 113 MB 112 MB 112 MB 112 MB 112 MB

112 MB

111 MB

111 MB

111 MB

111 MB

111 MB

111 MB

110 MB

110 MB

110 MB 110 MB 109 MB 109 MB 109 MB 109 MB 109 MB 109 MB 108 MB

108 MB

108 MB

108 MB

108 MB

107 MB

107 MB

106 MB

106 MB

106 MB

106 MB 106 MB 106 MB 106 MB 106 MB 106 MB 106 MB 106 MB

106 MB

106 MB

106 MB

106 MB

106 MB

106 MB

106 MB

105 MB

105 MB 105 MB 105 MB 105 MB 105 MB 105 MB 104 MB

104 MB

104 MB

104 MB

104 MB

104 MB

104 MB

104 MB

104 MB 104 MB 104 MB 104 MB 104 MB 104 MB

103 MB

103 MB

103 MB

103 MB

103 MB

103 MB

103 MB 103 MB 103 MB 103 MB 103 MB

103 MB

103 MB

103 MB

102 MB

102 MB

102 MB 102 MB 102 MB 102 MB

102 MB

102 MB

102 MB

101 MB

101 MB 101 MB 101 MB

101 MB

101 MB

101 MB

101 MB 101 MB

101 MB

101 MB

101 MB

100 MB

Small Spack projects (20.91 GB).
2933 MB

2933 MB

2757 MB

2597 MB

2594 MB

2594 MB

2594 MB

2594 MB

2359 MB

2236 MB

2157 MB

1661 MB

1174 MB 1163 MB 1158 MB 1081 MB 950 MB 901 MB

900 MB

900 MB

786 MB

786 MB

717 MB

625 MB

583 MB

539 MB

530 MB

526 MB

515 MB

501 MB

469 MB 453 MB 451 MB 415 MB 415 MB 402 MB 385 MB

363 MB 360 MB 344 MB 342 MB 342 MB 342 MB 327 MB

327 MB

327 MB

324 MB

315 MB

300 MB

298 MB

291 MB

277 MB 268 MB 267 MB 259 MB 248 MB 248 MB 246 MB

239 MB

238 MB

228 MB

228 MB

226 MB

211 MB
157 MB

154 MB

152 MB 150 MB 148 MB 146 MB 146 MB 146 MB

143 MB 143 MB 142 MB 142 MB 142 MB 142 MB

142 MB

142 MB

139 MB

132 MB

131 MB

129 MB

127 MB 126 MB 125 MB 121 MB 120 MB 119 MB

118 MB

116 MB

116 MB

116 MB

114 MB

114 MB 114 MB 113 MB 112 MB 110 MB

109 MB

109 MB

109 MB

107 MB

106 MB 106 MB 106 MB 105 MB

105 MB

104 MB

104 MB

103 MB

103 MB

103 MB

103 MB 103 MB 101 MB

101 MB

101 MB

101 MB 101 MB

101 MB 101 MB

7448 MB

4055 MB
2141 MB

Small Swift projects (2.47 GB).

624 MB 618 MB
271 MB

182 MB

Figure 1: Size distribution of LLVM intermediate representation (IR) bitcode within ComPile before
de-duplication within and among languages. Projects that we considered small and pooled had less
than 100MB of bitcode.

datasets of high-quality code to train such models properly. Models are only trained on smaller
datasets, such as Anghabench (5), Exebench (2), and HPCORPUS (11), or sometimes rely on
synthetic benchmarks. Small datasets ultimately lead to smaller, worse-performing models (9).

1.1 Contributions

Focussing on the paradigm of taking a pre-trained basic building block, a “foundation model”, we
pose the question "What does a modern, large code training dataset for compilers actually have to
look like?" and construct a high-quality dataset of a similar scale to existing LLM datasets solely at
the level of LLVM-IR. Within this context, we associate quality with the usage of code, with code
being used more often being of higher quality for our purposes. Correctly being able to reason about
very widespread code in production systems is incredibly important for compiler work. In the short
term, we believe our dataset will enable the training of larger language models for compilers useful
for an ever broader array of downstream tasks after fine-tuning, and in the long-term, enable use-cases
such as direct performance prediction to obtain a reliable runtime estimate without ever running a
single line of code. To these goals, our work makes the following contributions:

• The introduction of a 2.4TB dataset (closed), respectively 1.9TB dataset (public) of textual
LLVM-IR from Rust, Julia, Swift, and C/C++ with 182B, respectively 144B 3 tokens at a
vocabulary size of 10k. See table 1.1 for the number of tokens at varying vocabulary sizes.

• Open-sourcing of our workflow and compiler tooling to construct massive-scale IR datasets.

Vocabulary Size 10,000 50,000 100,000 200,000
ComPile (closed) 182 B 119 B 102 B 87 B
ComPile (public) 144 B 94 B 81 B 69 B

2 Background

Building upon package ecosystems as sources of intermediate representation is ideal due to the
large amount of packaged code and the abstraction over the build systems of individual projects. In
addition, package ecosystems act as a filter. Only code that gets used in production systems will get
packaged. The build system abstraction is due to a common compilation wrapper over compilation
recipes with their exact specification of dependencies. Modifying these build processes allows us
to take advantage of this existing infrastructure. In this work, we choose to specifically focus on

3Values linearly interpolated from raw size counts.

2



Language C C++ Julia Rust Swift Total
Size (Bitcode) 13 GB 81 GB 197 GB 482 GB 5 GB 778 GB

Size (Text) 61 GB 334 GB 1292 GB 1868 GB 22 GB 3577 GB
Dedup. Size (Bitcode) 8 GB 67 GB 130 GB 310 GB 4 GB 518 GB

Dedup. Size (Text) 34 GB 266 GB 856 GB 1221 GB 19 GB 2395 GB
Table 1: Amount of IR contained within ComPile in textual and bitcode form before and after
deduplication.

utilizing package managers that explicitly allow setting compiler flags, such as the from-source
package manager Spack (6) that is focused on high-performance computing (HPC).

In addition to utilizing package managers, we also take advantage of several aspects of the LLVM
compilation infrastructure (16), particularly the Clang C/C++ frontend and LLVM-IR, the inter-
mediate representation LLVM uses. The full process of compilation, such as the one performed
by Clang with LLVM during the compilation of C/C++, is composed of three main stages: the
frontend, the middle-end, and the backend. A compiler frontend has the job of taking a piece of
source code, typically a single source file, sometimes called a translation unit, and generating a
module of intermediate representation that can then be processed by a compiler middle-end, such as
LLVM. A module typically contains multiple functions, referenced globals, and relevant metadata.
Compiler intermediate representations, or IRs, are designed to sit between the source programming
language and the compiler’s output, assembly. They are typically designed to be source-language
and target-agnostic. Within LLVM, the compiler middle-end operates over the IR produced by the
frontend through a series of grouped operations called passes. A pass is designed to perform a specific
task, such as removing dead code, simplifying the control flow graph, or combining instructions.
After optimization, the compiler backend takes over, performing the necessary tasks to transform
the (mostly) target-agnostic IR into target-specific machine code that can be executed on the target
machine. The backend typically performs tasks such as instruction selection, instruction scheduling,
and register allocation. We compose our dataset, ComPile, of LLVM-IR, as it gives a common
framework across programming languages and target platforms. These properties and more make
LLVM-IR a great modality for a compiler-centric dataset useful for compiler tasks such as program
analysis, optimization, and code generation.

3 Dataset Construction

To construct the IR dataset, we use a set of curated sources from five different languages. focusing on
code used in production systems. We include the majority of Spack (6), the Rust Crates Index, the
Julia Package Index, the Swift Package Index, and several large single projects. Individual project
sources are defined in .json files. While most projects are hosted in repositories on GitHub, we also
added sources consisting of archived compressed source codes such as tarball files. The builders then
ingest the information from the project on its build system, either through the manifest information,
which contains the information on the building mechanism and commands, or through an ecosystem
specific manifest processed by a script that is then processed into a complete package manifest. Next
in the workflow is the LLVM-IR extraction. Extracting IR depends on the way the IR is presented in
the source. A manifest that contains a list of LLVM bitcode modules extracted from the project is
then created. Leaning into the shared LLVM compiler infrastructure, we are able to take advantage of
existing LLVM tools and LLVM passes to obtain information about the LLVM-IR modules. After
building, IR extraction, and deduplication, the dataset is then ready for downstream usage in analysis
or training capacities. 4

The aim of our IR extraction approach is to extract IR immediately after the frontend, before any
LLVM optimization passes have run. To extract the bitcode into a structured corpus, we take
advantage of the ml-compiler-opt tooling from MLGO (21) as it allows for the extraction of IR
in a variety of cases. During IR extraction, we also collect some additional data, such as debug
information, as it is represented in the IR. We specifically collect bitcode rather than textual IR as
LLVM supports reading bitcode produced by older versions of LLVM but has no such support for
textual IR, which is also easily produced by running llvm-dis over the collected corpus.

4Scripts and builders to reproduce the entire dataset are available under the llvm-ir-dataset-utils
subdirectory under https://zenodo.org/doi/10.5281/zenodo.10155760

3

https://zenodo.org/doi/10.5281/zenodo.10155760


Name of Dataset Tokens Size Languages
The Stack (13) - 2.9 TB 358 Languages

ComPile (closed) 182 B 2.4 TB Rust, Swift, Julia, C/C++
ComPile (public) 144 B 1.9 TB Rust, Swift, Julia, C/C++
Code Llama (20) 197 B 859 GB -
TransCoder (15) 163 B 744 GB C++, Java, Python
AlphaCode (17) - 715.1 GB 12 Languages

LLM for Compiler Opt. (3) 373 M 1 GB C/C++

Table 2: Breakdown of Related Datasets.

Training dataset deduplication can be important for the performance of several key model character-
istics. (1; 12). To this end, We deduplicate the entire dataset presented in this paper at the module
level by computing a combined hash of all global variables and functions, deduplicating based on a
hashing implementation that only captures semantic details of the IR. We chose to deduplicate at the
module level as this ensures the majority of the duplicate code is removed from the dataset while
leaving all significant context within each module for performing module-level tasks.

Please see appendix A4 for the exact details of our approach to the filtering of the closer version of
the dataset, to arrive at the public version.

4 Related Work

Most pretraining datasets for large language models (17; 13; 18) contain large swaths of code,
scraping source code from hosting services like GitHub, and GitLab without taking the quality of
the included code into account. Datasets of this type also do not guarantee that any of the code is
compilable, and often contain auxiliary files such as documentation in Markdown. Complementary
to these large pretraining-scale datasets, there exist a number of smaller, more focused datasets
aimed at the fine-tuning of already pretrained large language models (23; 17; 19). These datasets are
primarily collected through data extraction from coding competitions (17; 19), or the scraping of
curated websites (23). This guarantees a higher level of quality in regards to buildability and structure
for the included code, hence making them more optimal for fine-tuning. However, the data collection
methodology implicitly introduces a lack of variety in the datasets, reducing model performance (7).
For example, coding competititon datasets might include a couple thousand coding exercises which
contain a great many solutions to the same exercises, but yet they are only solving the very same set
of coding problems.

Additionally, there exist a number of domain-specific datasets (11; 2; 5). Often beginning with the
web-scraping of large amounts of code, these approaches modify the resulting code in a number of
ways. Examples include the modification of arbitrary source files to make them compilable (5) or
executable (2). ComPile, while being able to fulfill similar dataset demands, offers a number of key
advantages. The code in our dataset, by means of our dataset construction methodology, consists
only of compilable code, using the same compilation toolchain as used for production deployments
without changing semantics. Collecting IR before optimization allows for IR at any stage of the
compilation pipeline to be easily generated. This allows ComPile to go significantly beyond the
capabilities of previous compiler-targeted datasets.

5 Conclusion

In this work, we presented ComPile, a novel dataset of LLVM-IR collected from a number of package
ecosystems consisting of large production-grade codebases. It is significantly larger than previous
finetuning-focussed, and compiler-focussed code datasets, albeit smaller than large language model-
focussed code pretraining datasets. ComPile’s increased size in combination with its quality-focused
construction methodology not only enables the systematic evaluation of previous work, but opens
up entirely new avenues of research for IR-centric machine learning, and most specifically machine-
learned compiler componentry for which the scale of this dataset paves the way to an entirely new
generation of machine learning models for compilers.

4



6 Acknowledgements

This work was in parts prepared by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344 (LLNL-CONF-855448).

We would like to thank Valentin Churavy, Todd Gamblin, Alec Scott, Harmen Stoppels, Massimiliano
Culpo, Nikita Popov, and Arthur Eubanks for their assistance with understanding the relevant
language-specific optimization pipelines and assistance with getting upstreamed patches through
code review.

References
[1] ALLAMANIS, M. The adverse effects of code duplication in machine learning models of

code. In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (2019), pp. 143–153.

[2] ARMENGOL-ESTAPÉ, J., WOODRUFF, J., BRAUCKMANN, A., MAGALHÃES, J. W. D. S.,
AND O’BOYLE, M. F. P. Exebench: an ml-scale dataset of executable c functions. In
Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming
(New York, NY, USA, Jun 2022), MAPS 2022, Association for Computing Machinery, p. 50–59.

[3] CUMMINS, C., SEEKER, V., GRUBISIC, D., ELHOUSHI, M., LIANG, Y., ROZIERE, B.,
GEHRING, J., GLOECKLE, F., HAZELWOOD, K., SYNNAEVE, G., AND LEATHER, H. Large
language models for compiler optimization. arXiv:2309.07062 [cs].

[4] CUMMINS, C., WASTI, B., GUO, J., CUI, B., ANSEL, J., GOMEZ, S., JAIN, S., LIU, J.,
TEYTAUD, O., STEINER, B., ET AL. Compilergym: Robust, performant compiler optimization
environments for ai research. In 2022 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO) (2022), IEEE, pp. 92–105.

[5] DA SILVA, A. F., KIND, B. C., DE SOUZA MAGALHÃES, J. W., ROCHA, J. N., FER-
REIRA GUIMARÃES, B. C., AND QUINÃO PEREIRA, F. M. Anghabench: A suite with one
million compilable c benchmarks for code-size reduction. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO) (Feb 2021), p. 378–390.

[6] GAMBLIN, T., LEGENDRE, M., COLLETTE, M. R., LEE, G. L., MOODY, A., DE SUPINSKI,
B. R., AND FUTRAL, S. The spack package manager: bringing order to hpc software chaos.
p. 1–12.

[7] GUO, Z. C., AND MOSES, W. S. Enabling transformers to understand low-level programs.

[8] HAJ-ALI, A., AHMED, N. K., WILLKE, T., SHAO, Y. S., ASANOVIC, K., AND STOICA, I.
Neurovectorizer: end-to-end vectorization with deep reinforcement learning. In Proceedings
of the 18th ACM/IEEE International Symposium on Code Generation and Optimization (New
York, NY, USA, Feb 2020), CGO 2020, Association for Computing Machinery, p. 242–255.

[9] HOFFMANN, J., BORGEAUD, S., MENSCH, A., BUCHATSKAYA, E., CAI, T., RUTHERFORD,
E., CASAS, D. D. L., HENDRICKS, L. A., WELBL, J., CLARK, A., ET AL. Training
compute-optimal large language models. arXiv preprint arXiv:2203.15556 (2022).

[10] HUANG, Q., HAJ-ALI, A., MOSES, W., XIANG, J., STOICA, I., ASANOVIC, K., AND
WAWRZYNEK, J. Autophase: Juggling hls phase orderings in random forests with deep
reinforcement learning. arXiv:2003.00671 [cs].

[11] KADOSH, T., HASABNIS, N., MATTSON, T., PINTER, Y., AND OREN, G. Quantifying
openmp: Statistical insights into usage and adoption. arXiv preprint arXiv:2308.08002 (2023).

[12] KANDPAL, N., WALLACE, E., AND RAFFEL, C. Deduplicating training data mitigates privacy
risks in language models. In International Conference on Machine Learning (2022), PMLR,
pp. 10697–10707.

[13] KOCETKOV, D., LI, R., ALLAL, L. B., LI, J., MOU, C., FERRANDIS, C. M., JERNITE, Y.,
MITCHELL, M., HUGHES, S., WOLF, T., ET AL. The stack: 3 tb of permissively licensed
source code. arXiv preprint arXiv:2211.15533 (2022).

5



[14] KULKARNI, S., CAVAZOS, J., WIMMER, C., AND SIMON, D. Automatic construction of
inlining heuristics using machine learning. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO) (Feb 2013), p. 1–12.

[15] LACHAUX, M.-A., ROZIERE, B., CHANUSSOT, L., AND LAMPLE, G. Unsupervised transla-
tion of programming languages. arXiv preprint arXiv:2006.03511 (2020).

[16] LATTNER, C., AND ADVE, V. Llvm: A compilation framework for lifelong program analysis &
transformation. In International symposium on code generation and optimization, 2004. CGO
2004. (2004), IEEE, pp. 75–86.

[17] LI, Y., CHOI, D., CHUNG, J., KUSHMAN, N., SCHRITTWIESER, J., LEBLOND, R., ECCLES,
T., KEELING, J., GIMENO, F., DAL LAGO, A., ET AL. Competition-level code generation
with alphacode. Science 378, 6624 (2022), 1092–1097.

[18] MARKOVTSEV, V., AND LONG, W. Public git archive: a big code dataset for all. In Proceedings
of the 15th International Conference on Mining Software Repositories (2018), pp. 34–37.

[19] PURI, R., KUNG, D. S., JANSSEN, G., ZHANG, W., DOMENICONI, G., ZOLOTOV, V.,
DOLBY, J., CHEN, J., CHOUDHURY, M., DECKER, L., ET AL. Codenet: A large-scale ai for
code dataset for learning a diversity of coding tasks. arXiv preprint arXiv:2105.12655 (2021).

[20] ROZIÈRE, B., GEHRING, J., GLOECKLE, F., SOOTLA, S., GAT, I., TAN, X. E., ADI, Y.,
LIU, J., REMEZ, T., RAPIN, J., ET AL. Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950 (2023).

[21] TROFIN, M., QIAN, Y., BREVDO, E., LIN, Z., CHOROMANSKI, K., AND LI, D. Mlgo: a
machine learning guided compiler optimizations framework. arXiv preprint arXiv:2101.04808
(2021).

[22] YANG, C., WANG, X., LU, Y., LIU, H., LE, Q. V., ZHOU, D., AND CHEN, X. Large language
models as optimizers. arXiv preprint arXiv:2309.03409 (2023).

[23] ZHU, M., JAIN, A., SURESH, K., RAVINDRAN, R., TIPIRNENI, S., AND REDDY, C. K. Xlcost:
A benchmark dataset for cross-lingual code intelligence. arXiv preprint arXiv:2206.08474
(2022).

A Permissively-Licensed Dataset Size

Source Total Under Permissive Licenses with License Files
Rust 586 GB 468 GB 394 GB
Julia 210 GB 186 GB 186 GB

Spack 118 GB 67.3 GB 45.5 GB
Swift 7.35 GB 6.93 GB 6.93 GB
Total 921 GB 728 GB 632 GB

Table 3: Permissively licensed subset of ComPile in Bitcode size.

To filter our closed-source dataset for permissively licensed projects, we filter the entire database
of projects compiler into ComPile for the MIT, Apache-2.0, the BSD-3-Clause, and the
BSD-2-Clause licenses. For this we obtain the license information from package repositories,
GitHub, and in part manually using the go-license-detector 5, and distribute provenance infor-
mation, and license text along with the dataset to comply with terms.

5https://github.com/go-enry/go-license-detector

6

https://github.com/go-enry/go-license-detector

	Introduction
	Contributions

	Background
	Dataset Construction
	Related Work
	Conclusion
	Acknowledgements
	Permissively-Licensed Dataset Size

